An upper Minkowski dimension estimate for the interior singular set of area minimizing currents
نویسندگان
چکیده
Abstract We show that for an area minimizing m ‐dimensional integral current T of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension interior singular set is most . This provides strengthening existing Hausdorff bound due to Almgren and De Lellis & Spadaro. As by‐product proof, we establish improvement on persistence singularities along sequence center manifolds taken approximate blow‐up scales.
منابع مشابه
the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
Regularity of Area Minimizing Currents Iii: Blow-up
This is the last of a series of three papers in which we give a new, shorter proof of a slightly improved version of Almgren’s partial regularity of area minimizing currents in Riemannian manifolds. Here we perform a blow-up analysis deducing the regularity of area minimizing currents from that of Dir-minimizing multiple valued functions. 0. Introduction In this paper we complete the proof of a...
متن کاملRegularity of Area Minimizing Currents I: Gradient L Estimates
In a series of papers, including the present one, we give a new, shorter proof of Almgren’s partial regularity theorem for area minimizing currents in a Riemannian manifold, with a slight improvement on the regularity assumption for the latter. This note establishes a new a priori estimate on the excess measure of an area minimizing current, together with several statements concerning approxima...
متن کاملRegularity of Area Minimizing Currents Ii: Center Manifold
This is the second paper of a series of three on the regularity of higher codimension area minimizing integral currents. Here we perform the second main step in the analysis of the singularities, namely the construction of a center manifold, i.e. an approximate average of the sheets of an almost flat area minimizing current. Such a center manifold is accompanied by a Lipschitz multivalued map o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2023
ISSN: ['1097-0312', '0010-3640']
DOI: https://doi.org/10.1002/cpa.22165